Alkynyl- and Dialkynyl-quinoxalines. Synthesis of Condensed Quinoxalines

By Donald E. Ames* and M. Ismail Brohi, Chemistry Department, Chelsea College, Manresa Road, London SW3 6LX

Abstract

Condensation of 2-chloro- and 2,3-dichloro-quinoxalines with alk-1-ynes in the presence of bis(triphenylphosphine) palladium(II) dichloride and copper(I) iodide gives mono- and di-alkynylquinoxalines. Addition of amines to these products gives stable enamines; hydration gives 2^{\prime}-oxoalkyl compounds which exist predominantly in the intramolecularly hydrogen-bonded enol form. Condensation of the alkynylquinoxalines with diethyl sodiomalonate, and related compounds, yields pyrido[1,2-a]quinoxalin-4-one derivatives. 2-Alkynyl-3-chloroquinoxalines are intermediates for convenient syntheses of pyrrolo[2,3-b]quinoxalines.

SONOGASHIRA and his collaborators ${ }^{\mathbf{1}}$ have reported a new synthesis of arylacetylenes by condensation of aryl iodides with alk-l-ynes in the presence of diethylamine,

bis(triphenylphosphine)palladium(II) dichloride, and copper(I) iodide. 2-Bromo-pyridine similarly gave 2 phenylethynylpyridine on condensation with phenyl-
phenylacetylene, using the same catalysts in triethyl-amine-dimethyl sulphoxide, gave 2,3 -bisphenylethynylquinoxaline (la) as a crystalline product in 71% yield. Use of a smaller proportion of phenylacetylene furnished 2 -chloro-3-phenylethynylquinoxaline (lb) in 80% yield. 2-Chloro- and 2-chloro-3-methyl-quinoxaline reacted similarly and prop-2-yn-1-ol, but-3-yn-1-ol, and pent-4-yn-1-ol were also used successfully in these condensations (Table 1). An unsymmetrical diyne (1c) was also obtained by reaction of 2 -chloro- 3 -phenylethynylquinoxaline (lb) with prop-2-yn-1-ol. The analogous 2,3-dibromo-5,6-diphenylpyrazine (2a) was similarly converted into 2,3-diphenyl-5,6-bisphenylethynylpyrazine (2b).

When the condensation of 2,3-dichloroquinoxaline with phenylacetylene was carried out in the presence of diethylamine, displacement of halide ion by amine also occurred to give 2-diethylamino-3-phenylethynylquinoxaline (ld) (66%) but under these conditions prop-2-yn-1-ol gave only 2,3-bis(diethylamino)quinoxaline (le). Similarly with ethylamine as base, phenylacetylene yielded 2-ethylamino-3-phenylethynylquinoxaline (1f) whereas prop-2-yn-1-ol gave 2,3-bis(ethylamino)quin-

Table 1
Preparation of alkynylquinoxalines

a From benzene-light petroleum (b $\quad 60-80^{\circ} \mathrm{C}$) b From ligt petroleum (b $80-100^{\circ} \mathrm{C}$) From benzene a Dthylamine (70% in water) water). f Also isolated: 2,3.bis(methylamino)quinoxaline (13%), m.p. $175-176{ }^{\circ} \mathrm{C}$, from benzene-light petroleum (b.p. $60-80{ }^{\circ} \mathrm{C}$) (Found: C 63.9 ; $\mathrm{H}, 6.5 ; \mathrm{N}, 29.6 \%$; $M^{+}, 188.1 . \quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4}$ requires $\left.\mathrm{C}, 63.8 ; \mathrm{H}, 6.4 ; \mathrm{N}, 29.8 \% ; M, 188.2\right)$.
acetylene ${ }^{\mathbf{1}}$ and the process is of considerable potential value in heterocyclic syntheses. ${ }^{2}$ In the present work its application to chloro-quinoxalines was examined.

Condensation of 2,3-dichloroquinoxaline with excess of
oxaline. But-3-yn-1-ol was converted into 2 -ethylamino3 -(4-hydroxybut-l-ynyl)quinoxaline (lg) (95%) when a mixture of ethylamine and triethylamine was used. Methylamine (with phenylacetylene) yielded a mixture
of mono- (lh) (54%) and di-amines (li) (14%) whereas dimethylamine gave only the diamino-derivative.

A series of mono- ($3 ; \mathrm{X}=\mathrm{H}$ or Me) and di-enamines (4) were prepared (see Table 2) as crystalline products by

Treatment of 2-phenylethynylquinoxaline with a large excess of aqueous dimethylamine yielded 2-(2-hydroxy2 -phenylvinyl)quinoxaline (6 a) $(74 \%$). The i.r. spectrum of this product showed a very weak carbonyl peak at

(6b)
addition of amines to these acetylenic compounds. The enamines were very stable and unreactive, presumably owing to the electron-attracting effect of the diazine ring producing resonance between (3) and (3a). These enamines are formulated with the amino-group at C-2 of the side-chain, as would be expected from polarisation of
$1690 \mathrm{~cm}^{-1}$ corresponding to the oxo-form, 2 -phenacylquinoxaline (6b). A broad hydroxy-band ($v_{\max } 2920$ cm^{-1}) indicated that the intramolecularly hydrogenbonded enol-form (6a) predominates. ${ }^{3}$ This is consistent with the ${ }^{1} \mathrm{H}$ n.m.r. spectrum which includes peaks at $\delta 4.74(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $6.27\left(1 \mathrm{H}, \mathrm{s}, \mathrm{l}^{\prime}-\mathrm{H}\right)$.

Table 2
Preparation of enamines (3), (4), and (5).

	Enamine
x	$\mathrm{R}^{1} \quad \mathrm{R}^{2}$
(3) H	$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{O}_{2}\left[\mathrm{CH}_{2}\right]_{2}$
(3) H	
(3) Me	$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{O}_{2}\left[\mathrm{CH}_{2}\right]_{2}{ }^{\text {a }}$
(3) Me	$\mathrm{CHH}_{3} \mathrm{CHH}_{2}$
(4)	$\mathrm{H} \quad \mathrm{Me}$
(4)	${ }_{\left[\mathrm{CH}_{2}\right]_{2} \mathrm{O}\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right.}$
(4)	$\left.\left[\mathrm{CH}_{2}\right)_{2}{ }_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}\right]_{3}$
(4)	${ }^{\left.\left[\mathrm{CH}_{2}\right]_{2} \mathrm{NMMe}_{2} \mathrm{CH}_{2}\right]_{3}}$
(5a)	$\mathrm{Et}^{\text {Et }}$

	nd			Required (\%)			
C	H	N	Formula	C	H	N	M.p. (${ }^{\circ} \mathrm{C}$)
75.6	6.2	13.3	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$	75.7	6.0	13.2	120-121 a
80.0	7.1	13.4	C_{21}		6.7		133-135 a
${ }_{76.1}^{76.0}$	7.1	16.9 13.1	C_{2}	${ }_{76.1}$	6.8 6.4	17.0	104-105 b
80.3	6.9	12.9	$\mathrm{C}_{22}^{2 \mathrm{H}_{23} \mathrm{~N}_{3}}$	80.2	7.0	12.8	126-127a
76.4	7.1	16.0	$\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{~N}_{4}$	76.7	7.0	16.3	130-132 a
79.6	6.6	12.8	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4}$	79.9	6.7	13.3	186-188d
79.5	6.0	14.4	$\mathrm{C}_{268 \mathrm{H}_{2} \mathrm{~N}_{4}{ }^{\text {a }} \text {, }}$	79.6	6.2	14.3	186-187a
83.9	5.8	10.2	${ }_{\mathrm{C}}^{28}$	83.8	5.9	10.3	199-195 d
75.9 81.4	6.6 7.4	11.1 11.0	C_{3}	76.2 81.6	${ }_{7.3}^{6.3}$	11.1	${ }_{153-215-150}{ }^{\text {d }}$
76.8	7.3	15.5		76.9	7.2	15.8	155-157a
74.3	7.0	14.6	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}^{\text {No}}$	74.2	7.3	14.4	124-125a
69.9	7.2	16.2	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}$	70.	7.4	16.3	0b
75.6	7.2	17.6	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4}$	75.4	7.0	17.6	156-158

[^0]an acetylene group conjugated with the diazine ring. The assignment was confirmed by the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the enamine ($5 \mathrm{a} ; \mathrm{R}^{\mathbf{1}}=\mathrm{Me}$) which showed a singlet at $\delta 5.19\left(1 \mathrm{H} ; 1^{\prime}-\mathrm{CH}\right)$ and two triplets at $\delta 2.65$ and 3.92 $\left(2 \mathrm{H} ; 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{CH}_{2}\right)$. This evidence excludes the alternative structure (5b) in which the 2^{\prime}-methine and 3 '-methylene groups would be coupled.

2-(2-Hydroxy-2-phenylvinyl)-3-methylquinoxaline was obtained similarly but the di-enol, 2,3-bis-(2-hydroxy-2-phenylvinyl)quinoxaline could only be isolated in very small yield. Attempts to obtain these enols by other acid- or base-catalysed hydration reactions were unsuccessful.

Several alternative reactions were encountered when

Table 3
1,2-Disubstituted-pyrrolo[2,3-b]quinoxalines(8) prepared by method A

$\underset{R^{1}}{\text { Compound }}\left(8 ; R_{R^{2}}^{=}=H\right)$		Yield	Found (\%)			Required (\%)				
		(\%)	C	H	N	Formula	C	H	N	M.p. (${ }^{\circ} \mathrm{C}$)
$p-\mathrm{EtO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	Ph	86	78.9	5.3	11.7	$\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$	78.9	5.2	11.5	215-216 ${ }^{\text {a }}$
Ph	Ph	83	82.2	4.8	13.2	$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{3}$	82.2	4.7	13.1	230-232 b, c
Me	$\mathrm{CH}_{2} \mathrm{OH}$	78	67.4	5.3	19.6	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$	67.6	5.2	19.7	180-181 ${ }^{\text {d }}$
Et	$\mathrm{CH}_{2} \mathrm{OH}$	97	68.8	5.4	18.6	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$	68.7	5.8	18.5	143-145 ${ }^{\text {a }}$
$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{OH}$	$\mathrm{CH}_{2} \mathrm{OH}$	90	64.1	5.5	17.3	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$	64.2	5.4	17.3	174-175 ${ }^{\text {a }}$
p-EtO $\cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{OH}$	76	71.6	5.4	12.9	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$	71.5	5.4	13.2	218-219 ${ }^{\text {d }}$
Me	$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{OH}$	80	68.4	5.7	18.5	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$	68.7	5.8	18.5	173-174 ${ }^{\text {a }}$
Et	$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{OH}$	73	69.3	6.2	17.6	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$	69.7	6.3	17.4	$142-143{ }^{\text {d }}$
$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{OH}$	$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{OH}$	94	65.3	6.1	16.1	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$	65.4	5.9	16.3	195-196 ${ }^{\text {a }}$
Ph	$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{OH}$	63	74.6	5.2	14.5	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$	74.7	5.2	14.5	173-174 ${ }^{\text {a }}$
$p-\mathrm{EtO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{OH}$	72	71.9	5.7	12.6	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$	72.0	5.7	12.6	177-178 ${ }^{\text {a }}$
$\mathrm{CH}_{2} \mathrm{Ph}$	$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{OH}$	90	74.0	5.7	13.9	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$	75.2	5.7	13.9	144-145 ${ }^{\text {b }}$
Me	$\left[\mathrm{CH}_{2}\right]_{3} \mathrm{OH}$	88	69.5	6.3	17.3	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$	69.7	6.3	17.4	151-152 ${ }^{\text {a }}$
Et	$\left[\mathrm{CH}_{2}\right]_{3} \mathrm{OH}$	95	70.8	6.8	16.9	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$	70.6	6.7	16.5	166-167 ${ }^{\text {d }}$
$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{OH}$	$\left[\mathrm{CH}_{2}\right]_{3} \mathrm{OH}$	95	66.4	6.2	15.4	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$	66.4	6.3	15.5	189-190 ${ }^{\text {a }}$
$p-\mathrm{EtO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$\left[\mathrm{CH}_{2}\right]_{3} \mathrm{OH}$	97	72.2	6.0	12.0	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$	72.6	6.1	12.1	194-195 ${ }^{\text {a }}$

${ }^{a}$ From ethyl acetate. ${ }^{b}$ From ethanol. ${ }^{c} c f$. Russian Pat. 539,884/1976; C. Iijima and E. Hayashi, Yakugaku Zasshi, 1977, 97, 712. ${ }^{d}$ From benzene.

2-chloro-3-phenylethynylquinoxaline (lb) was treated with amines. Thus piperidine, N-methylpiperazine, morpholine, and 2 -hydroxyethylamine gave the corresponding diamines (1 j), etc. This unexpected nucleophilic displacement of the phenylethynyl ion is attributed to the electron-withdrawing effect of the chlorine substituent, enhancing resonance effects in the diazine ring.

Such displacement of phenylethynyl ion was not observed when H, Me, or $\mathrm{C} \vdots \mathrm{C} \cdot \mathrm{Ph}$ groups were present in place of the 2 -chloro-substituent. The less stable aliphatic acetylide ion was apparently not displaced from 2 -chloro-3-hydroxyalkynylquinoxalines.

2-Chloro-3-phenylethynylquinoxaline (lb) reacted with dimethylamine to form 2-dimethylamino-3-phenylethynylquinoxaline while ethylamine and 2 -hydroxyethylamine behaved similarly but with further addition of amine to the alkyne giving the enamines (7a) and (7b) respectively.

Action of primary aliphatic or aromatic amines on 2 chloro-3-alkynylquinoxalines generally gave the 1,2 disubstituted pyrrolo[2,3-b]quinoxalines (8) in good yields (Table 3) and this constitutes a convenient twostep synthesis of these compounds from 2,3-dichloroquinoxaline. 2-Ethylamino-3-phenylethynylquinoxaline (lf) was also readily cyclised to the pyrroloquinoxaline (8a) by various acidic or basic catalysts. Mer-
cury(ii) acetate in acetic acid effected this reaction and also cyclised 2 -diethylamino-3-phenylethynylquinoxaline (ld) with loss of one ethyl group. In only one case did action of an amine (ethylamine) on 2,3-dichloroquinoxaline and alkyne in the presence of bis(triphenylphos-

(9)

(10)
phine)palladium(II) dichloride and copper(I) iodide lead to the pyrrolo-compound (8a) directly

1-Ethyl-2-phenylpyrrolo[2,3-b]quinoxaline (8a) condensed with formaldehyde in the presence of acetic acid and dimethylamine to give 3 -acetoxymethyl-1-ethyl-2-

Table 4
Pyrido[1,2-a]quinoxalines (11) and dipyrido[1,2-a: $\left.2^{\prime}, 1^{\prime}-c\right]$ quinoxalines (12)

Quinoxaline (1)		Product					Yield	Found (\%)				Required (\%)			
		Reactant		X	R^{1}	R^{2}	(\%)	C	H	N	Formula	C	H	N	M.p. $\left({ }^{\circ} \mathrm{C}\right)$
Me	$\mathrm{C}: \mathrm{CPh}$	$\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$	(11)	Me	Ph	$\mathrm{CO}_{2} \mathrm{Et}$	41	73.3	5.2	7.8	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$	73.7	5.1	7.8	145-147 ${ }^{\text {a }}$
NHMe	$\mathrm{C}: \mathrm{CPh}$	$\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$	(11)	NHMe	Ph	$\mathrm{CO}_{2} \mathrm{Et}$	55	70.8	5.3	11.2	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$	70.8	5.1	11.3	159-160 ${ }^{\circ}$
NHEt	$\mathrm{C}: \mathrm{CPh}$	$\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$	(11)	NHEt	Ph	$\mathrm{CO}_{2} \mathrm{Et}$	82	71.5	5.6	10.7	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$	71.3	5.5	10.9	193-194 ${ }^{\text {a }}$
H	$\mathrm{C}: \mathrm{CPh}$	$\mathrm{AcCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	(11)		Ph	H^{2}	51	79.4	4.6	10.4	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$	79.4	4.4	10.3	197-198 ${ }^{\circ}$
Me	$\mathrm{C}: \mathrm{CPh}$	$\mathrm{AcCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	(11)		Ph	H	41	79.8	5.2	9.8	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$	79.7	5.0	9.8	194-196 ${ }^{\text {a }}$
NHMe	$\mathrm{C}: \mathrm{CPh}$	$\mathrm{AcCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	(11)	NHMe	Ph	H	23	75.6	4.7	14.0	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$	75.7	5.0	14.0	243-245 ${ }^{\text {b }}$
H	$\mathrm{C}: \mathrm{CPh}$	$\mathrm{NCCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$			Ph	CN	40	76.4	3.6	14.0	$\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$	76.7	3.7	14.1	210-212 ${ }^{\circ}$
Me	C:CPh	$\mathrm{NCCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	(11)	Me	Ph	CN	36	77.3	4.4	13.7	$\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$	77.2	4.2	13.5	194-195
$\mathrm{C}: \mathrm{CPh}$	$\mathrm{C}: \mathrm{CPh}$	$\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$	(12)		Ph	$\mathrm{CO}_{2} \mathrm{Et}$	45	73.3	4.8	5.2	$\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$	73.1	4.7	5.0	263-265 ${ }^{\text {a }}$
$\mathrm{C}: \mathrm{CPh}$	$\mathrm{C}: \mathrm{CPh}$	$\mathrm{AcCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	(12)		Ph	H	22	81.1	4.3	6.6	$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$	81.1	4.4	6.8	314-316 ${ }^{\text {d }}$

[^1]phenylpyrrolo[2,3-b]quinoxaline (8b). Similar reaction using diethylamine, however, gave mainly bis-(1-ethyl-2-phenylpyrrolo[2,3-b]quinoxalin-3-yl)methane (9) with a little of the acetate (8 b). Formylation of the l-ethyl-pyrrolo-compound (8a) by the Vilsmeier-Haack method with phosphoryl chloride-dimethylformamide ${ }^{4}$ yielded the aldehyde (8c).

Treatment of 2-chloro-3-phenylethynylquinoxaline with ethanolic sodium sulphide gave 2-phenylthieno-[2,3-b]quinoxaline (10).

Addition of carbanions to 2 -alkynylquinoxalines provided a route to a series of pyrido[1,2-a]quinoxalines (11) (see Table 4). Thus diethyl sodiomalonate and 2 -phenyl-

ethynylquinoxaline gave 9-ethoxycarbonyl-8-phenylpyrido [1,2-a] quinoxalin-10-one (1la) (30\%). Addition of ethyl sodio-acetoacetate involved simultaneous ethanolysis of the acetyl group to give 8-phenylpyrido[1,2-a]-quinoxalin-10-one (11b) (41%). Analogous reactions with 2,3 -diphenylethynylquinoxaline yielded the corresponding dipyrido $\left[1,2-a: 2^{\prime}, 1^{\prime}-c\right]$ quinoxaline-1,8-diones (12) (Table 4).

EXPERIMENTAL

Evaporations were carried out below $35^{\circ} \mathrm{C}$ using a rotary evaporator. I.r. spectra were recorded using a PerkinElmer 257 spectrometer and ${ }^{1} \mathrm{H}$ n.m.r. spectra with a Perkin-Elmer R32 (90 MHz) instrument.

Condensation of Chloroquinoxalines with Alkynes. General Procedure (cf. Reference 1).-Copper(I) iodide (10 mg) and bis(triphenylphosphine) palladium(II) dichloride (50 mg) were added to the chloroquinoxaline ($1.0 \mathrm{~g}, 5 \mathrm{mmol}$) in dimethyl sulphoxide (15 ml) and amine (40 ml) in a slow stream of nitrogen. The mixture was stirred and, after 10 min , the alkyne (7.5 mmol) was added. Stirring was continued for 6 h and then the mixture was evaporated, treated with water, and extracted with benzene. The dried solution was concentrated to small volume, passed through a short column of silica gel to remove catalysts, and then evaporated to give the crude product for crystallisation (Table 1).

When 2,3-dichloroquinoxaline (10 mmol) was treated with prop-2-yn-1-ol (7.5 mmol) in diethylamine only 2,3 -bis(diethylamino)quinoxaline (le) (71\%) was obtained, m.p. $76-77^{\circ} \mathrm{C}$ (from aqueous ethanol) (Found: C, 70.4; H, 8.7; $\mathrm{N}, 20.8$. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{4}$ requires $\mathrm{C}, 70.5 ; \mathrm{H}, 8.9 ; \mathrm{N}$, 20.6%). Ethylamine similarly gave 2,3-bis(ethylamino)quinoxaline (76%), m.p. $157-158^{\circ} \mathrm{C}$ (from aqueous
ethanol) (lit., ${ }^{5} 157-159{ }^{\circ} \mathrm{C}$). Similarly 2,3-dichloroquinoxaline with phenylacetylene in dimethylamine gave 2,3bis(dimethylamino)quinoxaline (79%), m.p. $62-63{ }^{\circ} \mathrm{C}$ (from aqueous ethanol) (Found: C, 66.5; H, 7.3 ; N, 25.8%; M^{+}, 216.0. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4}$ requires $\mathrm{C}, 66.6 ; \mathrm{H}, 7.5 ; \mathrm{N}, 25.9 \% ; M$, 216.2). Condensations with oct-1-yne, non-1-yn-3-ol, dec9 -yn-4-ol, ethyl prop-2-ynoate, and allyl alcohol were unsuccessful under these conditions.

2,3-Bisphenylethynyl-5,6-diphenylpyrazine (2b).-Condensation of 2,3-dibromo-5,6-diphenylpyrazine (2a) (1.25 $\mathrm{mmol})$ with phenylacetylene (3.75 mmol) by the general procedure gave the product (2 b) (74%), m.p. $173-175{ }^{\circ} \mathrm{C}$ [from benzene-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: $\mathrm{C}, 88.8 ; \mathrm{H}, 4.6 ; \mathrm{N}, 6.4 . \mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~N}_{2}$ requires $\mathrm{C}, 88.9 ; \mathrm{H}$, $4.7 ; \mathrm{N}, 6.5 \%), \nu_{\text {max }} 2205 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$.

2-[4-Hydroxy-2-methylaminobut-1-enyl]-3-methylquin-
oxaline $\quad(5 \mathrm{a} ; \quad \mathrm{R}=\mathrm{Me}) .-2$-(4-Hydroxybut-1-ynyl)-3methylquinoxaline (70 mg) was added to methylamine ($10 \mathrm{ml} ; 33 \%$) in ethanol with stirring. After 24 h , the solution was evaporated and the residue crystallised from benzene-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) to give the enamine as yellow needles, m.p. $135-136^{\circ} \mathrm{C}$, in almost quantitative yield (Found: C, 68.8; H, 7.1; N, 17.4. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ requires C, 69.1; H, 7.0; N, 17.3\%), $\nu_{\text {max. }} 3240$ (OH) and $1580 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}), \delta 2.45(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.58(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.68\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$ $\mathrm{OH}), 3.06(3 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}$, NHMe, collapsed to a singlet with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.92\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, $5.19(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$, $7.33-7.98(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $10.88(1 \mathrm{H}, \mathrm{br}, \mathrm{s}, \mathrm{NH}$, exchanges with $\mathrm{D}_{2} \mathrm{O}$). The other enamines are described in Table 2.

2-(2-Hydroxy-2-phenylvinyl)quinoxaline (2-Phenacylquinoxaline) (6a).-A mixture of 2-phenylethynylquinoxaline (0.2 g) and dimethylamine ($25 \mathrm{ml} ; 60 \%$ in water) was stirred at room temperature for 24 h . Evaporation and crystallisation from light petroleum (b.p. $80-100^{\circ} \mathrm{C}$) yielded the enol ($0.16 \mathrm{~g}, 74 \%$), m.p. $145-146{ }^{\circ} \mathrm{C}$ (Found: C, 77.5 ; H, $5.0 ; \mathrm{N}, 11.1 \% ; M^{+}, 248.00 . \quad \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires C, 77.4; $\mathrm{H}, 4.9 ; \mathrm{N}, 11.3 \% ; M, 248.27)$; $\nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 2920 \mathrm{br}(\mathrm{OH})$ and $1690 \mathrm{w} \mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\delta 4.74(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) 6.27(\mathrm{l} \mathrm{H}$, $\left.\mathrm{s}, \mathrm{l}^{\prime}-\mathrm{CH}\right), 7.28-8.20(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.46(1 \mathrm{H}, \mathrm{s}$, 3 - CH).

Similarly prepared were 2-(2-hydroxy-2-phenylvinyl)-3methylquinoxaline (48%), m.p. $119-120^{\circ} \mathrm{C}$ (lit., ${ }^{6}$ 125.6$126.5^{\circ} \mathrm{C}$) (Found: C, 77.7 ; H, 5.4 ; N, 10.8 . Calc. for $\left.\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 77.8 ; \mathrm{H}, 5.4 ; \mathrm{N}, 10.7 \%\right)$; $\nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 2920 \mathrm{br}$ (OH) and $1690 \mathrm{w} \mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \delta 2.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.74$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.27(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$, and $7.28-8.18(9 \mathrm{H}, \mathrm{m}$, ArH) ; and 2,3-bis-(2-hydroxy-2-phenylvinyl)quinoxaline (8\%), m.p. 202-204 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{6} 204.5-205.2^{\circ} \mathrm{C}$) (Found: C, $79.8 ; \mathrm{H}, 5.3 ; \mathrm{N}, 8.0 \% ; M^{+}, 366.16$. Calc. for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2}-$ $\left.\mathrm{O}_{2}: \mathrm{C}, 78.7 ; \mathrm{H}, 5.0 ; \mathrm{N}, 7.7 \% ; M, 366.40\right)$.

Conversion of 2-Chloro-3-phenethynylquinoxaline (1b) into 2,3-Dipiperidinoquinoxaline (li). The chloro-compound $(200 \mathrm{mg})$ and piperidine (10 ml) were heated under reflux (bath, $110^{\circ} \mathrm{C}$) for 5 h . The cooled mixture was poured into sodium carbonate solution; isolation with ethyl acetate gave 2,3-dipiperidinoquinoxaline (1 j) (189 mg), m.p. $140-141{ }^{\circ} \mathrm{C}$ (lit., ${ }^{7} 148{ }^{\circ} \mathrm{C}$) (Found: C, 72.8; H, 8.2; N, 18.8. Calc. for $\left.\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2}: \mathrm{C}, 72.9 ; \mathrm{H}, 8.2 ; \mathrm{N}, 18.9 \%\right), \delta 1.48-\mathrm{l} .93(12 \mathrm{H}$, $\left.\mathrm{m}, 2 \times\left[\mathrm{CH}_{2}\right]_{3}\right), 3.26-3.66\left(8 \mathrm{H}, \mathrm{m} 2 \times \mathrm{CH}_{2} \mathrm{NCH}_{2}\right)$, and $7.26-7.80(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. Similarly N-methylpiperazine gave 2,3-bis-(4-methyl-1-piperazinyl)quinoxaline (94%), m.p. $176-177^{\circ} \mathrm{C}$ [from light petroleum (b.p. 60-80 ${ }^{\circ} \mathrm{C}$)] (Found: 66.6; H, 8.2; N, 25.7 \% , $M^{+}, 326.42 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{6}$ requires C,
66.2 ; $\mathrm{H}, 8.0$; $\mathrm{N}, 25.8 \%$; $M, 326.44)$; morpholine gave 2,3-dimorpholinoquinoxaline (95%), m.p. $209-210^{\circ} \mathrm{C}$, [from benzene-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (lit., ${ }^{7} 225^{\circ} \mathrm{C}$) The same product, m.p. $210^{\circ} \mathrm{C}$, was obtained quantitatively from 2,3-dichloroquinoxaline and morpholine by the same procedure.

A solution of 2-chloro-3-phenylethynylquinoxaline (lb) (200 mg) and 2 -hydroxyethylamine (0.5 ml) in benzeneethanol (20 ml ; $1: 1 \mathrm{v} / \mathrm{v}$) was boiled under reflux for 15 h . Isolation as before gave 2,3-bis-(2-hydroxyethylamino)quinoxaline (74%), m.p. 175-177 ${ }^{\circ}$ [from acetone-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (lit.,$^{8} 181^{\circ}$).
2-Dimethylamino-3-phenylethynylquinoxaline.- 2-Chloro3 -phenylethynylquinoxaline (1 b) (200 mg) and dimethylamine ($20 \mathrm{ml} ; 60 \%$ in water) were heated under reflux for 4 h and the solution evaporated. The residue was dissolved in 2 m -hydrochloric acid (15 ml), basified with 8 m -sodium hydroxide solution (20 ml), and the product was isolated with chloroform. The base (120 mg ; 58%) had m.p. 97 $98^{\circ} \mathrm{C}$ [from light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: C, 79.2; $\mathrm{H}, 5.3 ; \mathrm{N}, 15.5 . \quad \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3}$ requires $\mathrm{C}, 79.1 ; \mathrm{H}, 5.5$; $\mathrm{N}, 15.4 \%) ; \nu_{\text {max. }} 2210 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ; \delta 3.23\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right)$ and 7.24-7.98 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

2-(2-Hydroxyethylamino)-3-(2-hydroxyethylamino-2-
phenylvinyl)quinoxaline(7b).- 2-Chloro-3-phenylethynylquinoxaline (1 b) (200 mg) and 2-aminoethanol (10 ml) were stirred at room temperature until the solid dissolved (45 min). The solution was left at room temperature for 7 h and then poured into 2 m -sodium carbonate solution. Isolation with ethyl acetate gave the diamine (7 b) $(320 \mathrm{mg}$; 91%), m.p. $164-165{ }^{\circ} \mathrm{C}$ (from ethyl acetate) (Found: C, $68.0 ; \mathrm{H}, 6.5$; $\mathrm{N}, 15.4 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.5 ; \mathrm{H}$, $6.3 ; \mathrm{N}, 15.9 \%$); $\nu_{\text {max. }} 3360(\mathrm{NH})$ and $1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; δ $2.85\left(3 \mathrm{H}, \mathrm{br}, \mathrm{s}, 2 \mathrm{OH}\right.$ and NH , exchange with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.35$ $\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\mathrm{NH}-\mathrm{CH}_{2}\right), 3.70(6 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, 3 \times$ $\left.\mathrm{CH}_{2}\right), 5.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArNH}$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, and $7.10-7.72(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

1-Alkyl-2-substituted-pyrrolo[2,3-b]quinoxalines $\left(8 ; \mathrm{R}^{3}=\right.$ H) (see Table 3).-Method A. From 2-chloro-3-alkynylquinoxalines and amines. Methylamine ($10 \mathrm{ml} ; 33 \%$ in ethanol) was stirred with 2 -chloro-3-phenylethynylquinoxaline (1b) $(200 \mathrm{mg})$ for 48 h . Addition of lm -sodium carbonate solution and isolation with ethyl acetate gave 1-methyl-2-phenylpyrrolo[2,3-b]quinoxaline $\quad\left(8 ; \quad \mathrm{R}^{1}=\mathrm{Me}, \quad \mathrm{R}^{2}=\mathrm{Ph}\right.$, $\left.\mathrm{R}^{3}=\mathrm{H}\right)(0.15 \mathrm{~g}, 77 \%)$ as yellow crystals, m.p. $144-145.5^{\circ} \mathrm{C}$ (Found: C, $78.2 ; \mathrm{H}, 5.3 ; \mathrm{N}, 16.1 \% ; M^{+}, 259.04 . \mathrm{C}_{17} \mathrm{H}_{13}{ }^{-}$ N_{3} requires $\left.\mathrm{C}, 78.7 ; \mathrm{H}, 5.1 ; \mathrm{N}, 16.2 \% ; M, 259.30\right), \delta 3.92$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.80(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH})$, and $7.43-8.26(9 \mathrm{H}, \mathrm{m}$, ArH). Aromatic amines (3 mol) and chloro-compound (1 mol) were refluxed in benzene-ethanol ($1: 1$) until reaction was complete (t.l.c.) $\left(\mathrm{PhNH}_{2}, 0.5 \mathrm{~h} ; p-\mathrm{EtO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}, 16-\right.$ $22 \mathrm{~h})$.
Method B. From 2-alkylamino-3-alkynylquinoxalines. 2-Ethylamino-3-phenylethynylquinoxaline (lf) (2 g) and mercury(II) acetate (0.5 g) in acetic acid (100 ml) were heated under reflux for 4 h . Evaporation, addition of water (150 ml), and isolation with ethyl acetate gave 1-ethyl-2-phenyl-pyrrolo[2,3-b]quinoxaline (8a) ($1.51 \mathrm{~g} ; 83 \%$) as yellow needles, m.p. $120-121{ }^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 79.0 ; $\mathrm{H}, 5.5 ; \mathrm{N}, 15.3 \% ; M^{+}, 273.04 . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3}$ requires C , $79.1 ; \mathrm{H}, 5.5 ; \mathrm{N}, 15.4 \%$; $M, 273.32), \delta 1.32(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.48\left(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.78(1 \mathrm{H}, \mathrm{s}, 3-$ CH), and $7.44-8.26(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. Cyclisation of the amino-alkynes was also effected using dimethylamine (60% in water, room temp., 72 h), or potassium hydroxide $(0.5 \mathrm{~m}$ in
water-methanol, $1: 2 \mathrm{v} / \mathrm{v}$, refluxed for 3 h), or concentrated hydrochloric acid-acetic acid ($1: 8 \mathrm{v} / \mathrm{v}$, refluxed 3 h).

2-Diethylamino-3-phenylethynylquinoxaline (ld) (250 $\mathrm{mg})$, acetic acid (12.5 ml), sulphuric acid (0.1 ml), and mercury (ii) acetate (63 mg) were heated under reflux for 4 h . Isolation as before gave the l-ethyl compound (8a) (53\%), identical with the previous sample. Action of dimethylamine (60% in water) for 14 d gave the same product.

Method C. From 2,3-dichloroquinoxaline. The dichlorocompound (10 mmol) was condensed with phenylacetylene (20 mmol) according to the general procedure with ethylamine ($60 \mathrm{ml}, 70 \%$ in water) and dimethyl sulphoxide (15 ml). Chromatography in benzene on silica gel yielded 1-ethyl-2-phenylpyrrolo[2,3-b]quinoxaline (8a) (56\%), identical with the previous sample.

Condensation of 1-Ethyl-2-phenylpyrrolo[2,3-b]quinoxaline (8a) with Formaldehyde.-(a) The pyrrolo-compound (200 mg), formaldehyde ($1.5 \mathrm{ml} ; 40 \%$ in water), dimethylamine ($1 \mathrm{ml} ; 60 \%$ in water), and acetic acid (90 ml) were heated under reflux for 8 h . Evaporation, addition of water, and isolation with ethyl acetate gave 3-acetoxymethyl-1-ethyl-2-phenylpyrrolo[2,3-b]quinoxaline (8b) (hemihydrate) (178 mg ; 78%), yellow needles, m.p. $115-117^{\circ} \mathrm{C}$ [from light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: C, 71.5; H, 5.3; N, 11.7. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 71.2 ; \mathrm{H}, 5.6 ; \mathrm{N}$, $11.9 \%)$; $\nu_{\max } 1723 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \delta 1.30\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{3}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{COCH}_{3}\right), 4.35(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.33\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{COCH}_{3}\right)$, and $7.43-8.38(9$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
(b) The pyrrolo-compound (270 mg), formaldehyde (1.5 $\mathrm{ml} ; 40 \%$ in water), diethylamine (1 ml), and acetic acid (25 ml) were heated under reflux for 9 h . Isolation as in (a) and chromatography in ethyl acetate-light petroleum (b.p. $80-100{ }^{\circ} \mathrm{C}$)-acetic acid (7:7:1 v/v/v) on silica yielded bis-(1-ethyl-2-phenylpyrrolo[2,3-b]quinoxalin-3-yl)methane (9) ($168 \mathrm{mg}, 30 \%$) as yellow needles, m.p. $158-159{ }^{\circ} \mathrm{C}$ [from light petroleum (b.p. $60-80^{\circ}$)] (Found: C, $79.5 ; 5.6 ; \mathrm{N}$, 15.4. $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{6}$ requires $\mathrm{C}, 79.5 ; \mathrm{H}, 5.4 ; \mathrm{N}, 15.0 \%$), δ $1.17\left(6 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.19\left(4 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $4.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}_{2}\right), 7.18-8.19(18 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. Further elution yielded the above acetoxy-compound (8 b) (15%).

1-Ethyl-3-formyl-2-phenylpyrrolo[2,3-b]quinoxaline
(8c) (cf. ref. 4).-Phosphoryl chloride (0.5 ml) was added dropwise to dimethylformamide $(2.0 \mathrm{ml})$ with shaking at $10-$ $20^{\circ} \mathrm{C}$. A solution of 2-chloro-3-phenylethynylquinoxaline $(0.3 \mathrm{~g})$ in benzene-dimethylformamide ($15 \mathrm{ml} ; 2: 1 \mathrm{v} / \mathrm{v}$) was added with shaking at $20-30^{\circ} \mathrm{C}$. The mixture was kept at $30-35^{\circ} \mathrm{C}$ for 1 h , then poured onto ice; sodium hydroxide $(2.5 \mathrm{~g})$ in water (30 ml) was added gradually until the mixture was at $c a$. pH 5 and the remainder was then added in one portion. The solution was boiled for 1 min and cooled; isolation with benzene yielded a gum which crystallised on trituration with ethanol. Recrystallisation from ethanol gave the formyl compound (8c), m.p. $158-160^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 75.5 ; \mathrm{H}, 5.3 ; \mathrm{N}, 14.0 . \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 75.7 ; \mathrm{H}$, $5.0 ; \mathrm{N}, 13.9 \%)$, $\nu_{\max } 1627 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \delta 1.60(3 \mathrm{H}, \mathrm{t}, J 7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.49\left(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.2-8.5(9 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$, and $8.51(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

2-Phenylthieno[2,3-b]quinoxaline
(10).-2-Chloro-3phenylethynylquinoxaline ($\mathbf{l b}$) (264 mg) was added to a stirred suspension of sodium sulphide dihydrate (125 mg) in ethanol (50 ml) and the mixture was stirred at room temperature for 72 h . Evaporation to small volume, addition of water, and isolation with ethyl acetate gave the thienocompound (10) (34%), m.p. $178-179{ }^{\circ} \mathrm{C}$ (from ethanol)
(Found: C, 73.1; H, 3.8; N, 11.0. $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}$ requires C , 73.2 ; $\mathrm{H}, 3.8 ; \mathrm{N}, 10.7 \%) ; \delta 6.80(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $7.36-$ 8.35 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

9-Ethoxycarbonyl-8-phenylpyrido[1,2-a]quinoxalin-10one (1la).-2-Phenylethynylquinoxaline ($0.23 \mathrm{~g} ; 1 \mathrm{mmol}$) and diethyl malonate ($0.24 \mathrm{~g} ; 1.5 \mathrm{mmol}$) were added to a cooled solution of sodium ethoxide [from sodium (0.034 g) and ethanol $(10 \mathrm{ml})]$. The solution was slowly heated to $100^{\circ} \mathrm{C}$ (oil-bath), kept under reflux for 1 h , cooled, and poured into water. Isolation with benzene yielded the product (lla) ($0.16 \mathrm{~g} ; 30 \%$) as yellow needles, m.p. 146 $148{ }^{\circ} \mathrm{C}$ [from benzene-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: C, 73.0; H, 4.7; N, 8.2. $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C , $73.2 ; \mathrm{H}, 4.7 ; \mathrm{N}, 8.1 \%$) ; $\nu_{\max } 1720\left(\mathrm{CO}_{2} \mathrm{Et}\right)$ and $1655 \mathrm{~cm}^{-1}$ (pyridone $\mathrm{C}=\mathrm{O}) ; \delta 1.10\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.24(2 \mathrm{H}$, $\left.\mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.82(\mathrm{IH}, \mathrm{s}, 1-\mathrm{H}), 7.28-8.05(9 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$, and $8.60(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$. Other pyrido- and dipyridoquinoxalines (Table 4) were prepared similarly.

We thank the Ministry of Education, Government of Pakistan, for a grant (to M. I. B.).
[9/1278 Received, 13th August, 1979]

REFERENCES

${ }^{1}$ K. Sonogashira, Y. Tohda, and N. Hagihara, Tetrahedron Letters, 1975, 4467
${ }^{2}$ cf. Y. Abe, A. Ohsawa, H. Arai, and H. Igeta, Heterocycles, 1978, 9, 1397.
${ }^{3}$ cf. R. F. Branch, Nature, 1956, 177\%, 671; R. F. Branch, A. H. Beckett, and D. B. Cowell, Tetrahedron, 1963, 19, 401.
${ }_{5}^{4}$ G. F. Smith, J. Chem. Soc., 1954, 3842.
5 B.P. 822,069/1959.
${ }^{6}$ F. W. Bergstrom and A. Moffat, J. Amer. Chem. Soc., 1937, 59, 1494.

7 W. R. Vaughan and M. S. Habib, J. Org. Chem., 1962, 27, 324.
${ }_{8}$ I. N. Goncharov and I. Y. Postovskii, Zhur. obshchei Khim., 1962, 32, 3323.

[^0]: a Recryst. from light petroleum (b.p. $60-80^{\circ} \mathrm{C}$). $\quad b$ Recryst. from light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)-benzene. e 70% in $\mathrm{H}_{2} \mathrm{O} \quad d \quad \mathrm{Recryst}$. from ethanol. e 33% in $\mathrm{H}_{2} \mathrm{O}$. All these products were obtained as yellow crystals in almost quantitative yields; all showed $\nu_{\max .} 1580-1595 \mathrm{~cm}^{-1}$.

[^1]: ${ }^{a}$ From acetone. ${ }^{b}$ From acetone-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$). $\quad{ }^{c}$ From benzene-light petroleum (b.p. $80-100{ }^{\circ} \mathrm{C}$). ${ }^{d}$ From benzene-acetone.

